7 research outputs found

    Testing Two Tools for Multimodal Navigation

    Get PDF
    The latest smartphones with GPS, electronic compasses, directional audio, touch screens, and so forth, hold a potential for location-based services that are easier to use and that let users focus on their activities and the environment around them. Rather than interpreting maps, users can search for information by pointing in a direction and database queries can be created from GPS location and compass data. Users can also get guidance to locations through point and sweep gestures, spatial sound, and simple graphics. This paper describes two studies testing two applications with multimodal user interfaces for navigation and information retrieval. The applications allow users to search for information and get navigation support using combinations of point and sweep gestures, nonspeech audio, graphics, and text. Tests show that users appreciated both applications for their ease of use and for allowing users to interact directly with the surrounding environment

    Testing Two Tools for Multimodal Navigation

    Get PDF
    The latest smartphones with GPS, electronic compasses, directional audio, touch screens, and so forth, hold a potential for location-based services that are easier to use and that let users focus on their activities and the environment around them. Rather than interpreting maps, users can search for information by pointing in a direction and database queries can be created from GPS location and compass data. Users can also get guidance to locations through point and sweep gestures, spatial sound, and simple graphics. This paper describes two studies testing two applications with multimodal user interfaces for navigation and information retrieval. The applications allow users to search for information and get navigation support using combinations of point and sweep gestures, nonspeech audio, graphics, and text. Tests show that users appreciated both applications for their ease of use and for allowing users to interact directly with the surrounding environment

    Ridge Profile Measurements for Understanding Ridge Resistance

    No full text
    Ice ridges are the most difficult ice features that ships encounter in first-year ice conditions. Our understanding on ridge resistance on ships is currently limited, but we can assume that the keel of a ridge can have a significant impact to the resistance due to its large volume. In order to study the ridge resistance, we measured ridge profiles and recorded ship machinery and operational data during RV Aranda sea ice cruise in the Baltic Sea on spring 2016. This paper presents results from our ridge profile measurements made by drilling and with a sonar. We found a fairly good correspondence between these two methods. The maximum depth of the profiled ridges varied between 3 and 5 meters and the width of the cross sections from 10 to 25 meters.Peer reviewe

    Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Cultures

    Get PDF
    Induced pluripotent stem cell (iPSC) technology enables differentiation of human hepatocytes or hepatocyte-like cells (iPSC-HLCs). Advances in 3D culturing platforms enable the development of more in vivo-like liver models that recapitulate the complex liver architecture and functionality better than traditional 2D monocultures. Moreover, within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation and maintenance of hepatocyte metabolic function. Thus, models combining 3D culture and co-culturing of various cell types potentially create more functional in vitro liver models than 2D monocultures. Here, we report the establishment of 3D cultures of iPSC-HLCs alone and in co-culture with human umbilical vein endothelial cells (HUVECs) and adipose tissue-derived mesenchymal stem/stromal cells (hASCs). The 3D cultures were performed as spheroids or on microfluidic chips utilizing various biomaterials. Our results show that both 3D spheroid and on-chip culture enhance the expression of mature liver marker genes and proteins compared to 2D. Among the spheroid models, we saw the best functionality in iPSC-HLC monoculture spheroids. On the contrary, in the chip system, the multilineage model outperformed the monoculture chip model. Additionally, the optical projection tomography (OPT) and electrical impedance tomography (EIT) system revealed changes in spheroid size and electrical conductivity during spheroid culture, suggesting changes in cell–cell connections. Altogether, the present study demonstrates that iPSC-HLCs can successfully be cultured in 3D as spheroids and on microfluidic chips, and co-culturing iPSC-HLCs with NPCs enhances their functionality. These 3D in vitro liver systems are promising human-derived platforms usable in various liver-related studies, specifically when using patient-specific iPSCs.Peer reviewe

    Oxidation-Induced Changes in the ALD-Al2O3/InAs(100) Interface and Control of the Changes for Device Processing

    Get PDF
    InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown Al2O3/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis. The chemical environment and core-level shifts are clarified for well-embedded InAs interfaces (12 nm Al2O3) to avoid, in particular, effects of a significant potential change at the vacuum-solid interface. High-resolution As 3d spectra reveal that the Al2O3/InAs interface, which was sputter-cleaned before ALD, includes +1.0 eV shift, whereas As 3d of the preoxidized (3 × 1)-O interface exhibits a shift of −0.51 eV. The measurements also indicate that an As2O3 type structure is not crucial in controlling defect densities. Regarding In 4d measurements, the sputtered InAs interface includes only a +0.29 eV shift, while the In 4d shift around −0.3 eV is found to be inherent for the crystalline oxidized interfaces. Thus, the negative shifts, which have been usually associated with dangling bonds, are not necessarily an indication of such point defects as previously expected. In contrast, the negative shifts can arise from bonding with O atoms. Therefore, specific care should be directed in determining the bulk-component positions in photoelectron studies. Finally, we present an approach to transfer the InAs oxidation results to a device process of high electron mobility transistors (HEMT) using an As-rich III–V surface and In deposition. The approach is found to decrease a gate leakage current of HEMT without losing the gate controllability.peerReviewe
    corecore